

Fast Charging Physical Layer IC for USB Interfaces

TypeC PD2.0/PD3.0/PPS, QC2.0/QC3.0/QC3+/QC4/QC4+,BC1.2

1. Features

• Fast charge

- ♦ Support QC4/QC4+
 - Compatible with QC2.0/QC3.0
 - Support QC3.0 Class B: 3.6V~20V(0.2V/step)
- ♦ Support QC3+
 - Support 3.6V~20V(0.02V/step)
 - Support 18W/27W/40W
- Support Apple 2.4A, Samsung 2.0A and BC1.2
- ♦ Support TYPE-C DFP
- ♦ Support PD2.0/PD3.0/PPS
- ♦ USB PD3.0 with PPS Certificate Number: TID:6667

Power Manage

- ♦ Build in ADC to monitor the current of the external NMOS FET
- ♦ Build in power path manage.
- ♦ Built-in automatic discharge function
- ♦ Cable drop Compensation
- Built-in VCONN power and switch for E-marked cable

Power Control Mode

- Optocoupler Mode: Build-in TL431.Drive optocoupler directly
- FB Mode: External TL431,connected to feedback node
- I2C Mode: Cooperate with the power supply chip, such as Inno3 pro.

• Multiple protection, high reliability

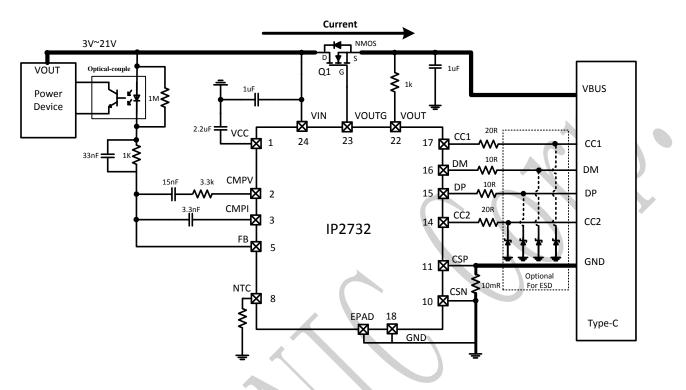
- Output overcurrent, overvoltage and short circuit protection
- ♦ NTC over temperature protection
- DP,DM,CC1,CC2 overvoltage protection
- \diamond DP,DM short with GND circuit protection
- ♦ DP/DM/CC1/CC2 input voltage up to 25V
- Support 100kHz-400kHz IIC Interface
- Working voltage : 3 V~30V

Package : QFN24

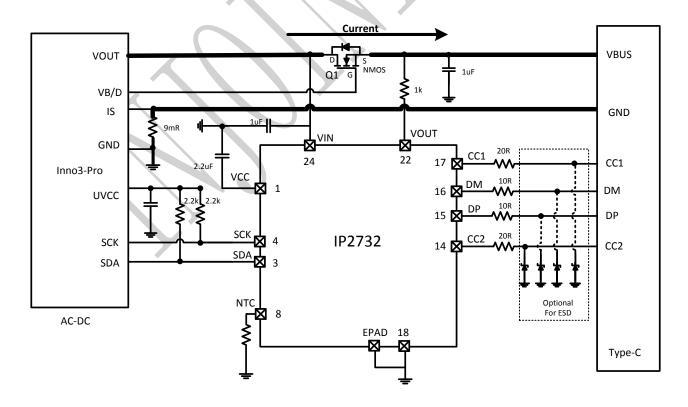
2. Description

IP2732 is a highly-integrated, flexible high voltage charging protocol controller. It supports the most popular high voltage charging protocol, such as TYPE-C, PD2.0/PD3.0, QC2.0/QC3.0, QC3+/QC4/QC4+, BC1.2 etc.

The SOC could be a powerful protocol controller used in AC adapter, power-bank, Car charger or other power charging solution, and make the total solution size minimized and BOM cost down.

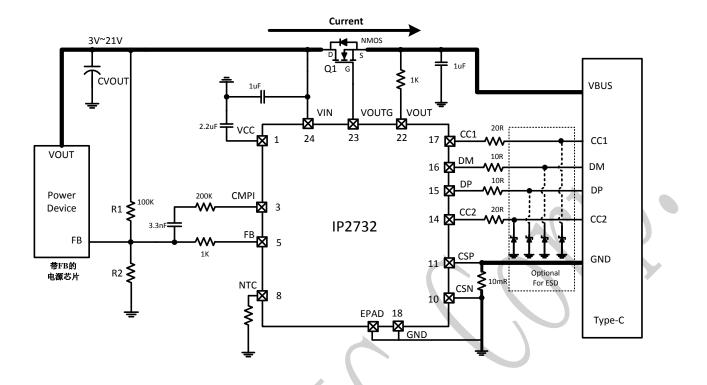

3. Typical Applications

- USB power output ports for AC adapters, Power Banka, Car chargers
- Battery chargers for smart phones, tablets, netbooks, digital cameras, and Bluetooth accessories

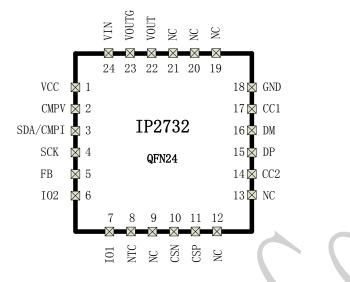


4. Typical Application Schematic

Optocoupler MODE



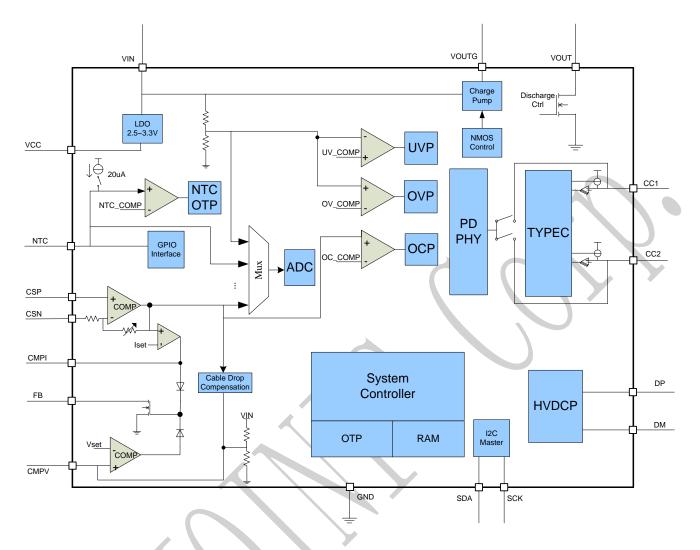
I2C MODE



FB MODE

5. PIN Description

Pin No.	Pin name	Pin description		
1	VCC	VCC Internal power supply output, need external 2.2 uF capacitance		
2	CMPV	Feedback loop compensation of voltage		
3 CMPI/SDA		Feedback loop compensation of current		
	CIVIFI75DA	I2C data		
4	SCK	I2C clock		
5	FB	Feedback PIN. Connect to the FB line of Regulator to the power device with		
5		FB control, current source/sink for voltage regulation		
6	GPIO2	General purpose IO2		
7	GPIO1	General purpose IO1		
8	NTC	NTC Resistor input for temperature sense		
	NIC	General purpose IO0		
9	NC	Not connect		
10	CSN	Current sense negative PIN		
11	CSP	Current sense positive PIN		
12	NC	Not connect		
13	NC	Not connect		
14	CC2	Type-C CC2 line		
15	DP	USB DP data line		
16	DM	USB DM data line		
17	CC1	Type-C CC1 line		
18	GND	ground		
19	NC	Not connect		
20	NC	Not connect		
21	NC	Not connect		
22	VOUT	VOUT discharge pin		


23	VOUTG	VOUT output path control on the NMOS
24	VIN	Power input

6. Type Specification

型号	模式	PDO/APDO(PPS)配置	QC 配置	QC3+	封装
IP2732_0C20W	光耦		01		
IP2732_FB20W	FB	PDO: 5V/3A, 9V/2. 22A, 12V/1. 67A	ClassA 3.6v-12v	18W	QFN24
IP2732_0C20WP	光耦	PDO: 5V/3A, 9V/2. 22A, 12V/1. 67A			
		PPS: 3.3V-5.9V/3A	ClassA	1.00	
IP2732_FB20WP	FB	PPS: 3.3V-11V/1.8A	3. 6v-12v	18W	QFN24
IP2732_0C25W	光耦		ClassA		· ·
IP2732_FB25W	FB	PDO: 5V/3A, 9V/2. 77A	3. 6v-12v	18W	QFN24
IP2732_0C25WP	光耦	PD0: 5V/3A, 9V/2. 77A			
IP2732 FB25WP	FB	PPS: 3.3V-5.9V/3A PPS: 3.3V-11V/2.25A	ClassA 3.6v-12v	18W	QFN24
				1011	qr n <u>a</u> r
IP2732_0C30W	光耦	PDO: 5V/3A, 9V/3A, 12V/2.5A,	ClassB		
IP2732_FB30W	FB	15V/2A, 20V/1. 5A	3.6v-20v	27W	QFN24
IP2732_0C30WP	光耦	PDO: 5V/3A, 9V/3A, 12V/2. 5A,	01 D		
IP2732 FB30WP	FB	15V/2A, 20V/1. 5A PPS: 3. 3V-11V/3A	ClassB 3.6v-20v	27W	QFN24
IP2732_0C45W	光耦				-
112732_0045₩	ノ山作利		ClassB		
IP2732_FB45W	FB	PDO: 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/2. 25A	3. 6v-20v	45W	QFN24
IP2732_0C45WP	光耦	PDO: 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/2. 25A	ClassB		
IP2732 FB45WP	FB	PPS: 3.3V-16V/3A	3. 6v-20v	45W	QFN24
 IP2732 0C65W	光耦				
			ClassB		
IP2732_FB65W	FB	PDO: 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/3. 25A	3. 6v-20v	45W	QFN24
IP2732_0C65WP	光耦	PDO: 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/3. 25A	ClassB		
IP2732_FB65WP	FB	PPS: 3. 3V-21V/3. 25A	3. 6v-20v	45W	QFN24
可定制	可定制	可定制	可定制	可定制	QFN24

7. Internal Block Diagram

8. Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
VIN Input Voltage Range	VIN	-0.3 ~ 30	v
VOUT Input Voltage Range	VOUT	-0.3 ~ 30	V
FB Input Voltage Range	FB	-0.3 ~ 30	V
DP, DM Input Voltage Range	V _{DP} , V _{DM}	-0.3 ~ 25	V
CC1, CC2 Input Voltage Range	V _{CC1} , V _{CC2}	-0.3 ~ 30	V
Other Pins Input Voltage Range		-0.3 ~ 6	V
Junction Temperature Range	TJ	-40 ~ 150	C
Storage Temperature Range	Tstg	-60 ~ 150	Ĉ
Lead Temperature Range	Ts	260	Ĉ

(Soldering, 10sec)			
Ambient Temperature Range	T _A	-40~120	Ĉ
Package Thermal Resistance	θ_{JA}	90	°C/W
Package Thermal Resistance	θις	39	°C/w
Human Body Model (HBM)	ESD	4	κν
Moisture Sensitivity Level (MSL)	MSL	3	Level

* Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.

Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability.

*Voltages are referenced to GND unless otherwise noted.

9. Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input Voltage	VIN	3		25	V
Ambient Temperature	T _A	-40		85	°C

* Devices' performance cannot be guaranteed when working beyond those Recommended Operating Conditions.

10. Electrical Characteristics

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Input Voltage	VIN	Supplied directly	3		25	V
Input UVLO Threshold	UVLO	VIN/VCC Falling	2.5		2.9	V
Output Voltage Range	VOUT		3		21	V
Output Voltage Range Accuracy	∆vout		-3		3	%
OCP current point	I _{OCP}	Rs=10mR, TA=25 ℃	0.2		6.4	А
OCP current point accuracy	ΔI_{OCP}	Rs=10mR, TA=25 ℃	-150		+150	mA
	I _{NOR}	No load, CC pin connect, VIN=5V	3	4	5	mA
Quiescent Current	I _{stdby}	Standby mode, CC pin floating, VIN=5V	0.4	0.8	1.2	mA
HVDCP (QC2.0&QC3.0)						
Data Detect Voltage Threshold	V_{DATA_REF}		0.25	0.325	0.4	V

Output Voltage Selection Reference	V _{SEL_REF}		1.8	2	2.2	V
DP High Glitch Filter Time	T _{GLITCH(BC)_DP_H}		1000	1250	1500	ms
DM Low Glitch Filter Time	T _{GLITCH(BC)_DM_L}		1	2	3	ms
Output Voltage Glitch Filter Time	T _{glitch(v)_} change		20	40	60	ms
Continuous Mode Glitch Filter Time	T _{GLITCH_CONT_CHANGE}		100		200	us
DM and DP Short Resistance	R _{SHORT}	V _{DP} =0.6V	20	30	40	Ohm
DM Pull-down Resistance	R _{DM_DOWN}	V _{DP} =0.6V	14.25	20	24.8	kOhm
DP Pull-down Resistance	R _{DAT_LKG}	V _{DP} =0.6V	200	500	800	kOhm
DCP						
Samsung DP/DM Output Voltage			1.08	1.2	1.32	v
Samsung DP/DM Output Impedance		\langle	70	100	130	kOhm
Apple 2.4A DP/DM Output Voltage			2.64	2.7	2.76	v
Apple 2.4A DP/DM Output Impedance			20	30	40	kOhm
NTC						
NTC OTP Current Source	I _{OTP}		19.4	20	20.6	uA
NTC OTP Voltage Threshold	V _{OTP}		0.1		3	V

11. Function Description

DP/DM Quick Charge

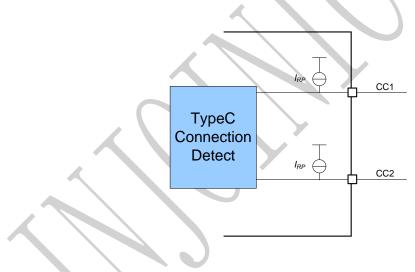
IP2732 can automatically detects Quick Charge 2.0/3.0 /QC3+ capable devices with handshake by USB D+/D- data line. It's also complaint with BC1.2.

- BC1.2: Shorting D+ Line to D- Line.
- QC3+: Support 18W/27W/40W. It can be disabled independently.
- Quick Charge 2.0/3.0: D+ and D- line configuration see **Table 1**.

Table 1 QC2.0/3.0 DP/DM configuration:

DP	DM	Result(Class A)	Result(Class B)
0.6 V	GND	5 V	5 V
3.3 V	0.6 V	9 V	9 V
0.6 V	0.6 V	12 V	12 V
0.6 V	3.3 V	Continue Mode	Continue Mode
3.3 V	3.3 V	Кеер	20V

TYPE-C


Two pins on the TypeC connector, CC1 and CC2 are used to establish and manage the Source-to-Sink connection.

Only CC1 is used for USB-A connector.

TypeC source exposes independent pull-up(Rp) teminations by current sources on CC1 and CC2 pins to advertise current capability and monitors the voltage by multiple comparators to detect a attach/detach.

The USB Type-C connector uses CC pins for configuration including the ability for a Source to advertise to its port partner (Sink) the amount of current it can apply:

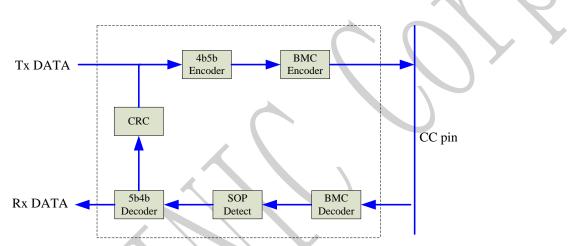
- Default values defined by the USB Specification (500 mA for USB 2.0 ports, 900 mA for USB 3.1 ports)
- 1.5A
- 3.0A

PD Physical Layer

The USB PD Physical Layer consists of a pair of transmitters and receivers that communicate across a single signal wire (CC).

The transmitter performs the following functions:

- Receive packet data from the protocol layer.
- Calculate and append a CRC.


- Encode the packet data including the CRC (i.e. the payload).
- Transmit the Packet (Preamble, SOP*, payload, CRC and EOP) across the channel using Biphase Mark Coding (BMC) over CC.

The receiver performs the following functions:

- Recover the clock and lock onto the Packet from the Preamble.
- Detect the SOP*.
- Decode the received data including the CRC.
- Detect the EOP and validate the CRC:

If the CRC is Valid, deliver the packet data to the protocol layer.

If the CRC is Invalid, flush the received data.

VOUT Discharge

When the device is unplugged, the VOUT pin can discharge energy to meet the time requirements of the USB- PD protocol

Voltage regulation mode

> FB Mode

IP2732 integrated FB control line used for accurate voltage regulation by source/sink current with precise 2uA/step in minimum. FB sink 40uA current for 9V output voltage; FB sink 70uA current for 12V output voltage; FB sink 150uA current for 20V output voltage; when the output voltage is default 5V, FB neither source nor sink current.

In typical applications, IP2732 FB connects to the regulator's FB line, resistor (R1) between VOUT and FB should apply 100kOhm with high precision (1%), resistor (R2) value between FB and GND should refer to the

regulator adopted, resistance of R2 can be calculated by equation:

$$VFB = \frac{VOUT}{R1 + R2} * R2$$

> Optocoupler Mode

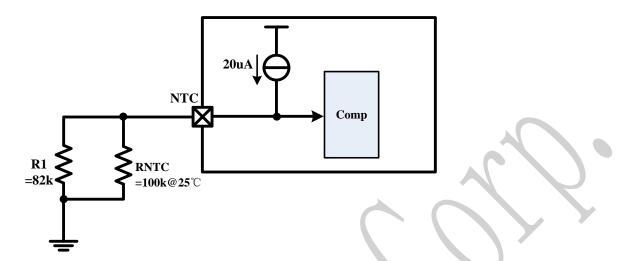
IP2732 integrates an optocoupler driver circuit, and the FB pin is connected to the Cathode end of the optocoupler for use in isolated power supplies. The value of external compensation network capacitance, resistance of CMPV and CMPI needs to be adjusted according to the specific parameters of the front-end power network, The CMPV compensation network is used to achieve VOUT output voltage stability. The CMPI compensation network is used to achieve stability of power control.

> I2C Mode

IP2732 integrate I2C master control interface, can cooperate with the power supply chip, such as Inno3 pro etc.

Cable Drop Compensation

IP2732 integrates the line compensation function, which can increase the output voltage in a certain proportion according to the current output current to compensate for linear loss. FB mode and Optocoupler mode can be increased according to the compensation coefficients of OmV/A, 62.5mV/A, and 125mV/A.


For example, if the compensation coefficient of 125mV/A is selected, if the no-load output voltage is 5.0V, then the actual output voltage=5.0V+3A*125mV/A=5.375V when the output current is 3A

V1.0 http://www.injoinic.com/

Protections

> NTC

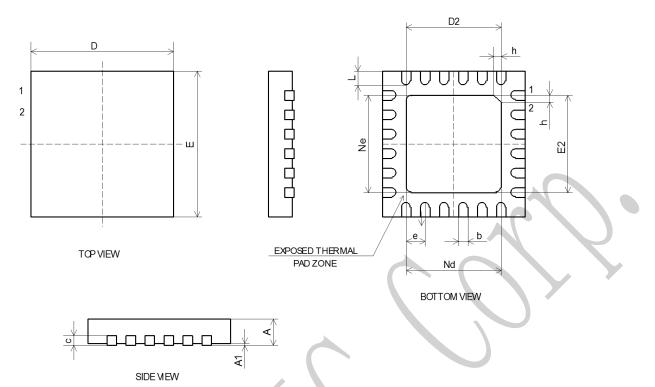
IP2732 support NTC function used for temperature detection. NTC pin output 20uA current then detect the voltage on NTC pin to determine the present temperature.

> OVP and UVP

IP2732 realizes over-voltage and under-voltage protection functions by detecting the voltage of VIN. The over-voltage threshold and the under-voltage threshold can be flexibly set according to the percentage of the current output voltage. When an abnormal event of over-voltage or under-voltage occurs, the Gate will be pulled low and the external path NMOS transistor will be closed. If the abnormal event disappears, the Type-C handshake and PD communication will be re-established.

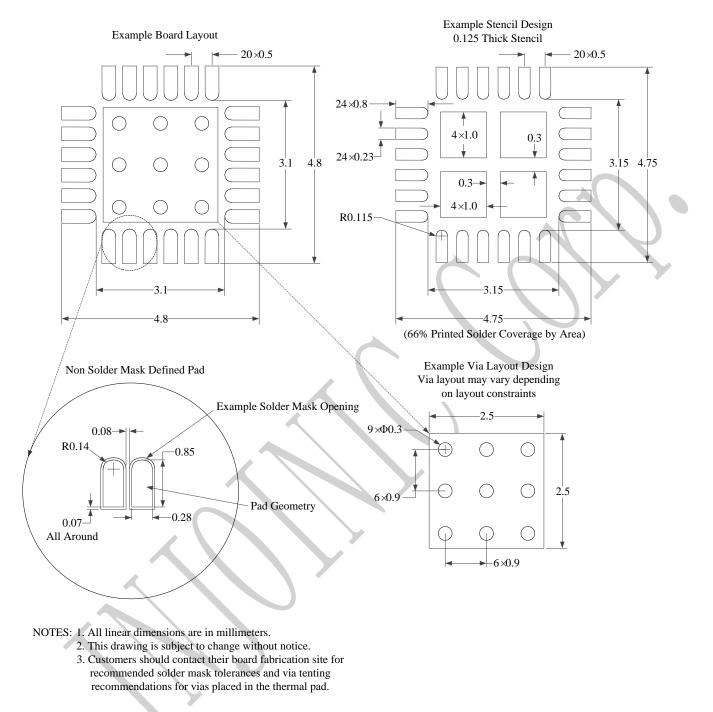
> OTP

IP2732 integrates internal junction temperature OTP protection. Junction temperature protection occurs when the junction temperature exceeds 135 $^{\circ}$ C

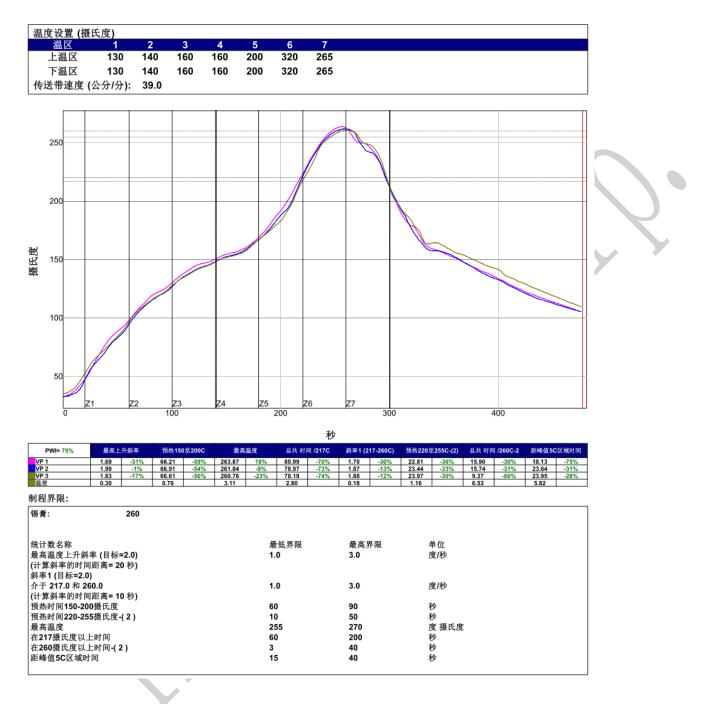

> OCP

IP2732 realizes OCP overcurrent protection by detecting the current flowing through the sampling resistor. The overcurrent threshold can be flexibly set. When the current reaches the over-current threshold, the over-current abnormal protection occurs, and the Gate will be pulled low, closing the external path NMOS transistor. If the abnormal event disappears, the Type-C handshake and PD communication will be re-established.

12.Package



SYMBOL		MILLIMETER	
STMBOL	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	-	0.02	0.05
b	0.18	0.25	0.30
С	0.18	0.20	0.25
D	3.90	4.00	4.10
D2	2.40	2.50	2.60
е		0.50BSC	
Ne		2.50BSC	
Nd		2.50BSC	
E	3.90	4.00	4.10
E2	2.40	2.50	2.60
L	0.35	0.40	0.45
h	0.30	0.35	0.40



13.Layout Design

14. Solder Instruction

15.IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.